
Strauß, O. and Kett, H. (2023). Documents as Intelligent Agents: An Approach to Optimize Document Representations in
Semantic Search. In Proceedings of the 19th International Conference on Web Information Systems and Technologies -
WEBIST; ISBN 978-989-758-672-9; ISSN 2184-3252, SciTePress, pages 164-175. DOI: 10.5220/0012239200003584

Presentet at WEBIST 2023 (https://webist.scitevents.org/Home.aspx?y=2023)

Copyright ©2023 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Documents as Intelligent Agents - An Approach to optimize Document
Representations in Semantic Search

Oliver Strauß a and Holger Kett b

Fraunhofer Institute for Industrial Engineering IAO, Nobelstraße 12, 70569 Stuttgart, Germany
{oliver.strauss, holger.kett}@iao.fraunhofer.de

Keywords: Dataset Search, Agent-based Retrieval, Semantic Search.

Abstract: Finding good representations for documents in the context of semantic search is a relevant problem with
applications in domains like medicine, research or data search. In this paper we propose to represent each
document in a search index by a number of different contextual embeddings. We define and evaluate eight
different strategies to combine embeddings of document title, document passages and relevant user queries
by means of linear combinations, averaging, and clustering. In addition we apply an agent-based approach to
search whereby each data item is modeled as an agent that tries to optimize its metadata and presentation over
time by incorporating information received via the users’ interactions with the search system. We validate
the document representation strategies and the agent-based approach in the context of a medical information
retrieval dataset and find that a linear combination of the title embedding, mean passage embedding and the
mean over the clustered embeddings of relevant queries offers the best trade-off between search-performance
and index size. We further find, that incorporating embeddings of relevant user queries can significantly
improve the performance of representation strategies based on semantic embeddings. The agent-based system
performs slightly better than the other representation strategies but comes with a larger index size.

1 INTRODUCTION

Since the advent of deep learning in natural language
processing a lot of progress has been made in the
field of semantic search (Onal et al., 2018). Trans-
former models such as BERT (Devlin et al., 2018) or
Sentence-BERT (Reimers and Gurevych, 2019) con-
vert words and sentences into dense vectors while
capturing their semantic context. Semantic search is
then performed by embedding the query in the same
way as the documents and finding the document vec-
tors closest to the query vector in vector space. Trans-
former models however are limited to processing a
fixed number of input tokens (Reimers and Gurevych,
2019). Although the number of tokens is constantly
increasing, long documents still can not be converted
to an embedding vector in one pass. One common
strategy to overcome this limitation is to split long
documents into passages and encode each passage
separately. One can then either average over the re-
sulting passage vectors to obtain one vector per doc-
ument or index multiple vectors for each document.

a https://orcid.org/0000-0003-1421-2744
b https://orcid.org/0000-0002-2361-9733

In this paper we construct different document repre-
sentation strategies by combining contextual seman-
tic embeddings of a document’s title and its passages
into new embeddings that are subsequently added to
the search index. We also combine these document-
based embeddings with embedded user queries in or-
der to adapt the documents’ representations to better
match the information demands of the users.

Deep semantic has been successfully applied in
various domains, ranging from medicine (Lee et al.,
2020) and research (Chu et al., 2023) to data search
(Castro Fernandez et al., 2018; Ahmadi et al., 2022).
This last aspect becomes more and more important as
finding, understanding and using data is an important
challenge in data ecosystems (S. Oliveira et al., 2019).
A user searches data to perform a specific task (Chap-
man et al., 2020) and must balance the effort needed
to search, evaluate and integrate external datasets with
the potential benefits that using the data can poten-
tially provide. From a data publishers perspective, the
problem is to prepare, describe and publish datasets
in a way that produces the most revenue with the least
amount of work (Hemphill et al., 2022).

In this context we propose the idea of intelligent
agents that strife to optimize the representation of

their document in a search search index. The agents
independently select different document representa-
tion strategies based solely on local information about
their position in user searches and relevance feedback
provided by the users. In our view a local, agent-
based approach to the optimization of document rep-
resentations is relevant, because approaches in which
data can remain at the premises of the data provider
are becoming increasingly important in data ecosys-
tems (Nagel and Lycklama, 2021). The approach has
potential applications in search infrastructures such as
(distributed) data catalogues, search engines or data
marketplaces to enable data users to better find, un-
derstand and evaluate relevant datasets. A (potentially
distributed) agent-based system is also consistent with
the concepts explored in the International Data Spaces
(Nagel and Lycklama, 2021) and Gaia X1 initiatives.

In our evaluation we investigate (RQ1) what the
most effective strategies to represent documents by a
set of sentence embeddings are, (RQ2) whether com-
bining document embeddings with embeddings of pre-
viously issued relevant queries can improve search
performance, and (RQ3) whether an agent-based in-
cremental optimization of the document representa-
tion based on local information yields satisfactory re-
sults.

The contribution of this paper is (1) the explo-
ration of different document representation strategies
that combine contextual semantic embeddings of a
document’s title, passages and user queries in various
ways. Specifically, we look at linear combinations
of embedding vectors, building averages over vectors
and apply agglomerate clustering to query vectors be-
fore averaging them in order to capture different user
intents. (2) We investigate the effect of combining
embeddings of previously issued queries with docu-
ment embeddings. (3) We model documents as in-
telligent agents, elaborating on and extending ideas
presented in (Strauß et al., 2022). The evaluation is
performed using the NFCorpus dataset (Boteva et al.,
2016), because it provides sufficient relevance feed-
back for each document to drive the agent-based sim-
ulation.

2 RELATED WORK

Semantic Search Over the last years a lot of progress
has been made in the field of deep learning in nat-
ural language processing. Models like Word2Vec
(Mikolov et al., 2013) or GloVe (Jeffrey Pennington
et al., 2014) can encode words into vectors and per-

1https://gaia-x.eu/

form similarity search by looking for nearest neigh-
bors in the vector space. Transformer models such
as BERT (Devlin et al., 2018) have been trained on
huge corpora of text and use cross attention to learn
to take the context of words into account. This makes
them suitable for tasks ranging from semantic search
to question answering or text classification. Sentence
transformer models (Reimers and Gurevych, 2019)
can average over the tokens of a sentence and pro-
vide a means to encode longer texts into contextual
embeddings. Instead of training a customized neural
model, we employ a general-purpose model to encode
documents into contextual semantic embeddings.

Document Expansion There are various ap-
proaches that try to improve query performance
by expand documents with additional information.
docT5query uses customized transformer models to
generate synthetic queries (Nogueira et al., 2019)
while (Jeong et al., 2021) use neural models to gener-
ate paraphrased text to be indexed alongside the orig-
inal document. Our approach focuses on the actual
title and passages and tries to combine them in an op-
timal way without the generation of addition text.

Agent-based Systems Agents have been inves-
tigated as autonomous (distributed) mechanism in
software development for a few decades. They can
be seen as socially intelligent, autonomous problem
solvers which achieve their objectives by interaction
with other similar autonomous entities (Hogg and
Jennings, 2001). Agents have been used for self-
organised, local optimisation in a broad spectrum of
applications such as autonomous network optimisa-
tion (Fabrikant et al., 2003) or distributed energy op-
timisation (Hinrichs and Sonnenschein, 2017).

The term agent is ambiguously used not only for
agents optimizing local objectives, but also for soft-
ware components with different functionalities. For
example, (Xue and Yan, 2012) use nine modules
(agents) for a search system using intelligent evolu-
tion based on user queries to improve accuracy of the
results. In the same sense (Mahmud et al., 2016) pro-
poses a agent-based meta search engine for open gov-
ernment data. (Ciortea et al., 2019) examine the use
of multi-agent systems in the context of the World-
Wide-Web. (Strauß et al., 2022) propose an agent-
based system for document expansion, where each
document is modeled as an agent, that tries to extend
its documents with terms from relevant queries. We
follow their view and consider agents as similar enti-
ties that act together in a search context to optimize
their own findability but also the performance of the
whole system.

https://gaia-x.eu/

3 APPROACH

3.1 Document Representation and
Semantic Search

Following the approach described in (Strauß et al.,
2022) we represent each document in the search index
with one or more representation variants. Each vari-
ant represents the document in a different way and
can be retrieved individually. Before the results are
presented to the user, the variants need to be removed
from the search result by only keeping the top-ranked
variant of each document. In this way an agent can
offer multiple representations of its document and re-
ceives feedback on the success of the respective vari-
ants.

We use semantic search via contextual sentence
embeddings based the sentence transformers library
(Reimers and Gurevych, 2019) as search strategy.
A Transformer model such as BERT (Devlin et al.,
2018) is a neural network that uses a cross atten-
tion mechanism to learn to encode tokens into vec-
tors while taking account of their context in the
text. Sentence transformers use similar tokens to en-
code entire sentences into a contextualized vector em-
bedding. Using the pre-trained transformer model
all-mpnet-base-v22 we encode the document title
and passages in to embedding vectors and combine
them with the strategies detailed in Section 3.2 into
variants that represent the document in the search en-
gine. Passages are built by splitting a document’s con-
tent into sentences.

The search itself is performed by encoding the
query in the same way and calculate the cosine simi-
larity between the query vector and the vectors of all
variants. The topk variants with the highest similarity
score are returned as result.

3.2 Document Representation
Strategies

To describe the different strategies of combining the
sentence embeddings of document titles, passages
and queries in a compact form, the notation in Eqns.
(1) - (4) are introduced. The mean over a set of em-
bedding vectors is given by Eqn. (1). Linear combi-
nations of two or three embedding vectors are given
by l1 in Eqn. (2) and l2 in Eqn. (3). Set in Eqn. (4) is
used as an abbreviation for a set of elements.

2https://huggingface.co/sentence-transformers/all-
mpnet-base-v2

p =
1
n

n

∑
i=1

pi (1)

l1(a,b,α) =
a+α ·b

1+α
(2)

l2(a,b,c,α,β) =
a+α ·b+β · c

1+α+β
(3)

SetN
i (xi) = {x1, . . . ,xN} (4)

With the title embedding vector t and the Np em-
bedding vectors of the document passages pi, the Nq
embedding vectors of the relevant queries qi, and em-
beddings of relevant queries ck

i belonging to cluster Ck

(with number of clusters Nc) we can construct a num-
ber of different document representations for each
document. The clusters Ck are created from the em-
beddings of the relevant queries known at the time by
agglomerate clustering using the scikit-learn library
(Pedregosa et al., 2011).

The combinations defined in Eqns. (5) - (12) were
investigated.

R1 = {t} (5)
R2 = {p} (6)

R3 = SetNp
i (pi) (7)

R4(α) = {l1(t,p,α)} (8)

R5(α) = SetNp
i (l1(t,pi,α)) (9)

R6(α,β) =

{
{l2(t,p,q,α,β)} if Nq > 0
R4(α) otherwise

(10)

R7(α,β) =

{
SetNq

i (l2(t,p,qi,α,β)) if Nq > 0
R4(α) otherwise

(11)

R8(α,β) =

{
SetNc

k (l2(t,p,ck,α,β)) if Nq ≥ 2
R4(α) otherwise

(12)

R1 uses the embedding of the document title to
represent the document. R2 uses the mean of the doc-
ument’s passage embeddings while R4 uses this mean
in a linear combination with the title embedding. In
R3 all passage embeddings represent the document
while these passage embeddings are combined in R5
with the embedding of the title in a linear combina-
tion. R6 is the linear combination of the title embed-
ding, mean passage embedding and the mean over the
embeddings of all known relevant queries for the doc-
ument. R7 combines the embedding of each relevant
query with the title embedding and the mean passage

© Fraunhofer IAO

Seite 1

Search Engine Interaction
Interface Front-endAgent-based

Data Pool

Dataset
Metadata Queries

User
Interaction

Aggregated feedback for
periodic agent update

Results

Feedback
Aggregator

User
feedback

Relationships

Figure 1: Architecture of the agent-based system. A feedback loop connects agents and the search engine that provides
agents with information about when they were found and whether their document was considered relevant. Search engines
periodically receive updated document representation from the agents.

embedding in a linear combination while R8 uses the
mean embedding of each cluster of queries instead.

Since R6-R8 rely on information about queries
which might not always be available, they fall back to
the R4 strategy, which is similar but does not require
knowledge of relevant queries.

3.3 Documents as intelligent agents

In this paper we propose to represent each document
by an intelligent agent, that tries to promote its docu-
ment in a way that optimizes its discoverability. The
intelligent agents act locally by adjusting their own
presentation to the needs of the users. For this to
work the agents are embedded in a system that pro-
vides a feedback loop with users, allowing to mea-
sure the success of the agents’ behavior. The agents
in our experiment use the representation strategies R1-
R8 to periodically generate new representation vari-
ants, measure the variants success based on relevance
feedback and subsequently filter out unsuccessful rep-
resentations.

An intelligent agent is an autonomous compo-
nent that possesses internal state, interacts with other
agents and its environment, makes autonomous deci-
sions based on its state and environment and can learn
and adapt to a changing environment (Jackson et al.,
2017). The internal state of a dataset agent is mainly
given by the document content and eventual metadata.
The environment consists of a search engine that uses
the metadata provided by the agents to answers user
queries, and a component that captures, aggregates
and transmits user feedback to agents. Agents act
locally based on their state and local knowledge ob-
tained from their environment (see Subsection 3.3.3).

Figure 1 gives an overview of the general archi-
tecture of the agent-based simulation. Documents are
managed by agents that together form an agent-based
data pool. The data pool is comprised of the agents
and the infrastructure needed to register and update
the agents. Each agent publishes its representation to
a search engine that indexes the provided information

for later retrieval. Users interact with the system using
a (web based) front-end that communicates with the
search engine via an interaction interface component.
This interaction interface manages the users’ actions
and the communication with the search engine. In do-
ing so it captures relevant user actions, search queries
and search results. This user feedback is an essen-
tial input for the document agents that allows them to
adapt to users’ needs and terminology. The user feed-
back is sent to the feedback aggregator component,
that collects and aggregates the user feedback over a
period of time and sends the aggregated information
to the data pool to update the agents.

In our experiment actual user feedback is approx-
imated by the relevance judgments that come with
the used information retrieval test collection (see Sec-
tion 3.3.2). Therefore the components that capture
real user feedback (namely the interaction interface,
front-end, and feedback aggregator in Figure 1) are
not needed and are replaced by the provided relevance
information described in Section 4.1.

3.3.1 Agent environment

Each document agent operates in an environment that
the agent can use to gather information for its deci-
sions and with which the agent can interact. In the
proposed approach the agents’ environment consists
of the following elements:

• Search engine — The agent publishes its repre-
sentation to the search engine that incorporates
the representations into the search index. With
their actions, agents influence, what information
is submitted to the search engine.

• User feedback — The user interacts with the
search engine in order to find data that meets her
information need. The interaction interface col-
lects information from the users’ actions during
her search session that indicates to the agents what
is being searched and which documents are con-
sidered relevant for the user’s data need. As stated
above, user feedback is simulated in our experi-

© Fraunhofer IAO

Agent

Seite 3

Dataset
Metadata &
Agent State

Decision
Logic Inputs

choosesupdates

in
fo

rm
s

Search Engine Feedback
Aggregator

Other Agents

in
fo

rm
s

Relationship Context

informs
History (limited in time)

Actions

informs

updates

uses

Figure 2: Internal structure of a proposed datasets agent.

ment by the relevance feedback provided by the
used test collection (see Section 3.3.2).

3.3.2 User interaction and feedback

User feedback is an essential external input for dataset
agents to learn about their relevance and success in
respect to data needs and about the terminology used
by different users. For example, if an agent’s dataset
has been returned in the result list of a query, the agent
is informed about the query text q, its rank r in the list,
its search engine score.

We use an information retrieval test collection to
emulate user feedback. This enables reproducible re-
sults and removes the need for expensive user exper-
iments. The topics/queries and relevance judgments
provided by the test collection (see Section 4.1) re-
place the front-end and interaction interface compo-
nents in Figure 1.

3.3.3 Agent actions

For making sound decisions, each agent keeps track
of the history of the actions it has taken and the
user feedback it has received. It can analyse and ex-
ploit this information and derive its actions from this
data. Since the environment and the user’ needs may
change over time the agents "forget" historical in-
formation after a certain amount of time (Figure 2).
Although not implemented in our simulation docu-
ment agents could interact and establish relationships
with other agents in order to support co-operating be-
haviour. This is symbolized by the relationship con-
text in Figure 2.

The agents are optimising their visibility for fit-
ting search queries from a local perspective in a self-
ish way. In such a setup, rules or restrictions are re-
quired to ensure meaningful decisions. Letting agents
try different strategies in parallel in the form of rep-
resentation variants as in (Strauß et al., 2022) offers
a pragmatic approach to evaluate an agent’s perfor-

mance. Instead of credit contingents or explicit re-
ward functions, the reward is measured by the suc-
cess of the agents’ variants and the agent logic (Sec-
tion 3.3.4) needs to decide, whether a variant should
be kept, deleted or whether new variants should be
created. New variants are created using the represen-
tation strategies R1-R8 described in Section 3.2.

The agents are triggered periodically after the sys-
tem has run for a certain time. The user feedback col-
lected during that time is aggregated and transmitted
back to the agents. Then the agents’ decision cycle
is triggered during which the agents determine their
actions and change their representations. Finally the
agents send their representation variants to the search
engine. The updates of the search engine index can be
collected and performed as batch job. After the update
has been performed the systems collects information
for the next period.

3.3.4 Agent Logic

The structure of the implemented agent is shown in
Figure 3. The feedback collector takes the search re-
sults from the search engine and produces feedback
signals that are sent to the agents. For each variant
in a search result list that is considered relevant by
the relevance judgments a positive signal is created.
All other variants receive a negative signal. Each sig-
nal contains the following information: the text of the
query q, the rank in the result list r, and the search
engine score.

Whenever an agent receives input signals, it per-
forms the following steps:

1. It increases its update counter t by one. t plays the
role of local time for the agent.

2. It separately stores the positive and negative sig-
nals.

3. It updates the variants belonging to the signals
with the information in the signal. Each variant
maintains the time tc of its creation as well as

© Fraunhofer IAO

Seite 17

Feedback-Signal
(document id, relevant

query, rank,
search engine score)

Previous Queries

Feedback-Signal
(document id, relevant

query, rank,
search engine score)

Feedback Signal
(document id + variant,

relevant/irrelevant
query, rank,

search engine score)

Search Engine

Interaction
(Queries and

Relevance Judgments
from Test Collection)

Variant Generator
Feedback Collector

Variant Statistics

U
p

d
at

e
L

o
g

ic

Underlying Document
(Title + Passages)

Agent

Variant Pool (Embeddings)

adds Variants deletes Variants

triggers

Figure 3: Internal structure of an agent in the implemented agent-based system.

counters Np and Nn for the number of positive or
negative signals it has received. The variant also
tracks the ranks rp

i and rn
i .

4. If a positive signal was received, an update of the
variants is triggered.

For variant update, the agent computes a score s(t)
for each variant. Following (Strauß et al., 2022) the
score is calculated as the product of the mean recipro-
cal rank 1/N ∑

N
i=0 1/ri and the success rate N/(t − tc)

of the variant. In deviation from (Strauß et al., 2022)
we also take negative feedback into account by tak-
ing the difference of the positive and negative mean
reciprocal rank. This results in Eqn. (13):

s(t) =
1

t − tc
(

Np

∑
i=1

1/rp
i −

Nn

∑
i=1

1/rn
i) (13)

After the scores have been calculated the variant
update is performed in the following steps:

1. Variants with an age t − tc less than a grace period
tg are kept in the variants pool and not considered
in the further process

2. Variants are sorted by score using the scoring
function given by Eqn. (13). The Nmin best vari-
ants are retained, and all other variants are deleted.

3. At least Nnew variants are created using the repre-
sentation strategies described in Section 3.2.

Each agent maintains a set of representation
strategies in a circular list that is randomly shuffled on
agent creation. Whenever new variants need to be cre-
ated, the next strategy is chosen from the list and the
list pointer is advanced by one. These rules allow the
pool of representation variants to dynamically grow
and shrink. Expansion of the pool amounts to explor-
ing the space of possible representations while retain-
ing at least the best Nmin variants after the shrinking
based on the variants’ fitness exploits performance of
the best variants.

3.3.5 Agent Update Cycle

The concrete realization of the feedback loop depicted
in Figure 1 is realized in our simulations by the fol-
lowing procedure:

1. Initialize the agents with an initial set of at least
Nmin variants that are created using the config-
ured representation strategies as described in Sec-
tion 3.3.4.

2. Initialize the search index with the embeddings
contained in all variants of all agents. Each agent
is potentially represented by multiple embeddings
in the index.

3. Shuffle all queries in the training set and create
batches of queries.

4. Execute all queries in the current batch. Care must
taken that at least topk = 100 unique documents
are retrieved, since potentially many variants rep-
resenting the same document are in the results list.

5. Collect feedback signals.

6. Aggregate feedback signals for each agent and
send it to the agent.

7. The agents update their state and update their pre-
sentation by creating new variants or deleting un-
successful old ones according to the procedure de-
scribed in Section 3.3.4.

8. A new search index is created from the embed-
dings of all variants.

9. If there are more batches, go back to step 4.) else
continue.

After all training queries have been processed, the
index of the search engine contains the representa-
tions optimized by the agents during the training run.
This index is used to perform the evaluation and the
calculation of performance metrics. Since each doc-
ument is represented by multiple variants, only the

R1 R2 R3 R4 R5 R6 R7 R8 A1 A2 A3 A4

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Pr
ec

isi
on

@
10

Precision@10

R1 R2 R3 R4 R5 R6 R7 R8 A1 A2 A3 A4

0.12

0.14

0.16

0.18

Re
ca

ll@
10

Recall@10

R1 R2 R3 R4 R5 R6 R7 R8 A1 A2 A3 A4

0.28

0.30

0.32

0.34

0.36

0.38

0.40

nD
CG

@
10

nDCG@10

R1 R2 R3 R4 R5 R6 R7 R8 A1 A2 A3 A4

0.030

0.035

0.040

0.045

nD
CG

@
10

 /
lo

g(
In

de
x

Si
ze

)

Performance

Figure 4: Box plots of the results of the cross evaluation runs for the different experiments: Precision@10 (top left), Re-
call@10 (top right), nDCG@10 (bottom left), and P = nDCG@10/log(IndexSize) as an indicator of weighted performance.

top-ranked variant for a document is considered while
lower-ranked variants are discarded.

4 EVALUATION

4.1 Test Collection

We chose the NFCorpus test collection (Boteva et al.,
2016) as basis for the evaluation of the agent-based
system, because it contains a sufficiently large amount
of relevance feedback. We use the BEIR variant
of this dataset (Nandan Thakur et al., 2021), since
it comes with duplicate documents removed. This
dataset consists of 3,633 unique documents from the
medical domain that mostly come from PubMed and
are written in expert terminology. Each document
consists of a title and an abstract. The collection
also provides 3,237 natural language queries that are
written in non-technical English and have been ob-
tained from the NutritionFacts.org website. The col-
lection contains three types of queries that were ex-
tracted from different sources: 1,016 video queries
were taken from titles of video pages, 413 non-topic

queries were extracted from the titles of pages not
tagged with a topic, and 1,808 queries issued by users.
An example of a document and the different query
types is presented in Table 1.

The documents and queries are complemented by
134,294 automatically extracted relevance judgments.
(Boteva et al., 2016) use hyperlinks between pages
of the NutritionFacts website and medical articles to
automatically construct relevance information. They
consider a document d relevant for query document
q, if q contains a direct external hyperlink to d (strong
relevance) or if q links to a second similar query q′

that in turn links to d (weak relevance). In our experi-
ment we use binary relevance judgments and consider
both cases as relevant. Documents not linked in the
described way to queries are considered not relevant.

Because of the high number of relevance judg-
ments, each document is considered on average rele-
vant for over 30 queries. Since these relevant queries
are driving the feedback loop of the agent-based simu-
lation NFCorpus is a good fit for this problem. A split
in training (80 %), development (10 %) and test sets
(10 %) is provided. In order to make better use of the
provided data, we instead employ a cross validation
strategy with stratified splits described in Section 4.2.

Table 1: Examples of a typical document and the different
query types.

Document Example

Title Dietary Cadmium Intake and the Risk of
Cancer: A Meta-Analysis

Abstract Background Diet is a major source of cad-
mium intake among the non-smoking gen-
eral population. Recent studies have de-
termined that cadmium exposure may pro-
duce adverse health effects at lower expo-
sure levels than previously predicted. We
conducted a meta-analysis to combine and
analyze the results of previous studies that
have investigated the association of dietary
cadmium intake and cancer risk. Meth-
ods We searched PubMed, EMBASE, and
MEDLINE database for case-control and
cohort studies that assessed the association
of dietary cadmium intake and cancer risk.

Query Example

User liver health
Video Eating Better to Look Better
Non-topic What is a good source of probiotics?

4.2 Evaluation Strategy

In order to make good use of the available test data,
we employ a nested cross validation strategy to mea-
sure the performance of the document representation
strategies and the agent-based simulations. Since the
test data can contain different types of queries, we em-
ploy stratified splits in order to retain the same mix-
ture of the different query types in all data slices.

1. Nouter = 5 outer splits are created. Each contains
a larger set of training queries and a smaller set of
test queries.

2. For parameter optimization, the training queries
are again split into Ninner = 4 splits.

3. All Ninner inner splits are evaluated and the fitness
used for optimization is computed as the mean of
the Ninner runs.

4. After a set of optimal parameters has been deter-
mined, the test queries are used to perform the
final evaluation run and to calculate the perfor-
mance metrics.

4.3 Metrics

We use the retrieval metrics precision, recall and
the ranking metrics normalized discounted cumula-
tive gain (nDCG) and calculate these metrics for the
top 10 hits in each search (thus e. g. Precision@10
in Table 2). nDCG is well suited to measure realistic
user behaviour (Fuhr, 2018) and is therefore preferred

over mean average precision (MAP) and mean recip-
rocal rank (MRR). We also record the index size I
resulting from each run. Since the results of the Nouter
cross evaluation runs were unevenly distributed and
contained outliers, we report median scores instead
of mean values.

Since representing each document in the search
index with multiple variants increases the index size
I which leads to higher computational cost for each
search, there is a trade-off between the potentially in-
creased search performance through additional vari-
ants and the computational cost of these additional
variants. In order to capture this trade-off, we in-
troduce a performance indicator P such that P =
nDCG@10/logI.

4.4 Representation Strategies

In a first step we evaluated the different document
representation strategies defined in Section 3.2 out-
side the agent-based simulation in a setting, where
all knowledge about queries and relevance judgments
from the training set was used to collect the relevant
queries for each document. We applied the cross vali-
dation approach described in Section 4.2. In every run
each strategy produced the corresponding embedding
representations for each document using input from
the training queries. The created embeddings were
aggregated in the search index of the semantic search
engine. The test queries were then submitted to the
search engine and only the top-ranked variant for each
document were kept in the result list. Finally, the rel-
evance judgments were used to create the metrics to
evaluate the retrieval performance of the run.

In the optimization step the parameters α and β of
the strategies R4-R8 were optimized to maximize the
nDCG@10 metric using the RBFOpt library (Costa
and Nannicini, 2018; Nannicini, 2021). The results
are shown in Figure 4 and in Table 2 in rows R1-R8.
Table 5 shows the parameter values of the evaluation
runs.

4.5 Agent-based experiments

Four agent-based configurations A1-A4 were tested
that use different sets of representation strategies. All
four configurations use the strategies R1-R4 that solely
rely on the document title and passages. In addition,
A1 uses R5, A2 uses R6, A3 uses R7, and A4 uses R8.
Optimization of the parameters tg, Nmin, and Nnew in
addition to the α-, β- and γ-parameters of the repre-
sentation strategies was performed using the RBFOpt
library. The agent-based configuration were evaluated
using cross validation (Section 4.2) and the procedure

Table 2: Overall effectiveness of the eight document representation strategies (R1-R8) and the four agent-based simulations
(A1-A4, used strategies are indicated in brackets). In all runs all-mpnet-base-v2 was used as embedding model. Plain
numbers indicate the median over all five cross evaluation splits. Numbers in parenthesis indicate the standard deviation. For
each run the final size of the index is given. The best results are highlighted in boldface. The nDCG@10 baseline methods
marked with (*) were taken from Table 2 in (Nandan Thakur et al., 2021).

Exp. nDCG@10 Precision@10 Recall@10 Performance P Index Size I

BM25∗ 0.325 - - - -
docT5query∗ 0.328 - - - -
BM25-CE∗ 0.350 - - - -
R1 0.314 (0.006) 0.243 (0.009) 0.142 (0.002) 0.038 3633 (0)
R2 0.298 (0.012) 0.227 (0.012) 0.134 (0.008) 0.036 3633 (0)
R3 0.318 (0.006) 0.249 (0.011) 0.148 (0.005) 0.030 35130 (0)
R4 0.324 (0.007) 0.250 (0.011) 0.150 (0.005) 0.039 3633 (0)
R5 0.319 (0.006) 0.249 (0.011) 0.148 (0.005) 0.030 35130 (0)
R6 0.347 (0.015) 0.283 (0.015) 0.171 (0.008) 0.042 3633 (0)
R7 0.402 (0.012) 0.324 (0.014) 0.188 (0.007) 0.035 107492 (2028)
R8 0.356 (0.012) 0.285 (0.019) 0.166 (0.002) 0.043 24036 (45622)
A1 [R1-R4, R5] 0.334 (0.009) 0.260 (0.013) 0.155 (0.004) 0.031 36948 (4601)
A2 [R1-R4, R6] 0.357 (0.012) 0.288 (0.016) 0.175 (0.006) 0.033 47908 (93)
A3 [R1-R4, R7] 0.338 (0.007) 0.262 (0.012) 0.157 (0.004) 0.031 49659 (2)
A4 [R1-R4, R8] 0.361 (0.012) 0.288 (0.016) 0.177 (0.005) 0.033 49540 (102)

described in Section 3.3.5. The results are shown in
Figure 4 and in Table 2 in rows A1-A4. Table 4 shows
the parameter values of the evaluation runs.

All experiments were performed on a NVIDIA
A100-SXM4-40GB GPU.

5 DISCUSSION

Concerning our research questions defined in Sec-
tion 1 we can draw the following conclusions from
our experiments.

(RQ1) What are the most effective strategies to
represent documents by a set of sentence embed-
dings? A useful reference and benchmark for the
NFCorpus test collection is provided as part of the
BEIR benchmark (Nandan Thakur et al., 2021). It
reports a nDCG@10 baseline performance of 0.325
for the lexical search method BM25 (Robertson and
Zaragoza, 2009) and a best score of 0.350 for the
BM25+CE re-ranking method (Wang et al., 2020).
The results of our experiments summarized in Ta-
ble 2 are not directly comparable with these num-
bers, since the evaluation strategy was different. They
still provide a weak indication of the performance
of the tested methods. When comparing strategies
R1-R5 that do not incorporate knowledge from user
queries, R4 which combines the title embedding with
the mean if the passage embeddings performs best
in terms of the median nDCG@10 (0.324) and P
(0.039) measures. Of the strategies that incorporate

user queries the representation strategy R8, which is
the linear combination of the title embedding, mean
passage embedding and the mean over clustered rele-
vant queries achieves the best P-performance (0.043)
with a median nDCG@10 score of 0.356. The best
median nDCG@10-performance of 0.402 is achieved
by strategy R7 which combines title embeddings and
average passage embeddings with all relevant user
queries. This leads to a P value of only 0.035. We
conclude that the strategy R8 that uses agglomerate
clustering over user queries offers the best trade-off
between index size I and nDCG@10 performance fol-
lowed by R6. This is also visible in Figure 5.

0 20000 40000 60000 80000 100000
Index Size

0.30

0.32

0.34

0.36

0.38

0.40

nD
CG

@
10

R1

R2

R3
R4 R5

R6

R7

R8

A1

A2

A3

A4

nDCG@10 vs Index Size

Figure 5: Trade-off between search performance
(nDCG@10) and index size I.

Table 3: Comparison of the effectiveness of the conducted experiments. The comparison is based on the first split of the cross
validation process, therefore results differ from Table 2, that shows the median over all five cross validation splits. The best
results are highlighted in boldface. Superscripts denote significant differences in paired Student’s t-test with p ≤ 0.01.

Model NDCG@10 P@10 Recall@10

a R1 0.315 0.243b 0.143
b R2 0.300 0.227 0.135
c R3 0.318b 0.249b 0.143
d R4 0.329ab 0.250b 0.150b

e R5 0.319b 0.249b 0.143
f R6 0.344abce 0.271abcde 0.169abcde

g R7 0.404abcde f hi jkl 0.324abcde f hi jkl 0.194abcde f hi jkl

h R8 0.352abcde 0.273abcdei 0.164abcde

i A1 0.338abce 0.260abcde 0.155bce

j A2 0.352abcde 0.274abcdeik 0.172abcdeik

k A3 0.338abce 0.262abcde 0.151b

l A4 0.353abcdeik 0.275abcdeik 0.170abcdeik

Table 4: Median parameters for the experiments A1-A4 (standard deviation included in parenthesis) determined by parameter
optimization during cross validation.

Exp. NMin NNew tg α (R4) α β γ

A1 8.0 (0.4) 1.0 (3.5) 0.0 (2.2) 3687.0 (851.6) 8072.5 (929.7) - -
A2 2.0 (0.0) 28.0 (0.0) 6.0 (0.0) 2611.3 (0.0) 3280.6 (0.0) 7411.1 (0.0) -
A3 29.0 (0.0) 23.0 (0.0) 27.0 (0.0) 6200.9 (0.0) 9531.2 (0.0) 2818.0 (0.0) -
A4 24.0 (2.9) 2.0 (8.6) 0.0 (8.9) 4802.4 (1963.3) 3567.4 (1058.0) 8370.3 (1406.8) 65.8 (44.8)

(RQ2) How strong is the improvement in perfor-
mance if combining document embeddings with are
combined with embeddings of previously issued rel-
evant queries? While strategies R1-R5 use no in-
formation from user feedback, the other approaches
do make use of additional information from user
feedback in form of relevant and irrelevant queries.
We observe, that unsurprisingly the strategies R6-R8
which use information from relevant queries signif-
icantly outperform the other strategies. In order to
test this observation, we compared the runs of the first
cross validation split of each method and performed a
paired Student’s t-test with p ≤ 0.01 (Table 3). We
find that R6-R8 perform significantly better than R1-
R5.

(RQ3) Does an agent-based incremental opti-
mization of the document representation based on lo-
cal information yield satisfactory results? The results
of A2 and A4 outperform R6 and R8 on which they are
based in terms of nDCG@10 but have a significantly
lower P-value because they create a larger index. If
this is not an issue, then the performance of A2 and
A4 is acceptable. We suspect that the potential of the
agent-based approach is not fully realized in the pre-
sented experiments since co-operative aspects such as
information sharing between similar agents has not
been investigated in our experiments.

It has to be noted that the representation strategies
R3, R5, R7 and R8 produce multiple variants for each
document and thus trade a bigger index size for poten-
tially higher retrieval performance. This also applies
to the agent-based simulations. Figure 5 visualizes
this trade-off. It can be observed that the strategies
R4, R6 and R8 offer the best compromise between in-
dex size I and nDCG@10-performance.

Another observation is, that there is a rather big
variation in some parameters as can be seen from Ta-
bles 4 and 5.
Table 5: Median parameters for the experiments R4-R8
(standard deviation included in parenthesis) determined by
parameter optimization in the five cross validation splits.

Exp. α β γ

R5 250.1 (340.9) - -
R6 513.8 (62.8) 917.0 (52.1) -
R7 995.7 (1.3) 489.7 (55.5) -
R8 6.9 (444.0) 5.9 (232.8) 994.7 (446.2)

6 CONCLUSION AND FUTURE
WORK

In this paper we propose to represent each document
in the search index by several different contextual
embeddings. We define and evaluate eight differ-
ent strategies to combine embeddings of document ti-
tle, document passages and relevant user queries by
means of linear combinations, averaging, and cluster-
ing. In addition, we apply an agent-based approach
to search whereby each data item is modeled as an
agent that tries to optimize its metadata and presenta-
tion over time by incorporating information received
via the users’ interaction with the search system. The
agents only act on local information available to them.
This allows them to operate in a distributed environ-
ment, such as data catalogues in data spaces.

We validate the document representation strate-
gies and the agent-based approach in the context
of medical information retrieval via semantic search
based on contextual sentence embeddings and simi-
larity search. We evaluate eight different represen-
tation strategies and test them in the context of the
agent-based system. We find that strategy R8 which is
the linear combination of the title embedding, mean
passage embedding and the mean over the clustered
embeddings of all known relevant queries offers the
best trade-off between nDCG@10-performance and
index size. We further find, that incorporating em-
beddings of relevant user queries can significantly
improve the performance of representation strategies
based on semantic embeddings. The agent-based sys-
tem performs slightly better than the other representa-
tion strategies in terms of nDCG@10 (nDCG@10 =
0.361 for A4) but come with a larger index size.

The performed experiments indicate, that the
agent-based approach to search can yield promising
results. In the future other aspects of the proposed ap-
proach such as inter-agent relationships, co-operation
or a more sophisticated agent logic based on rein-
forcement learning could be explored. The availabil-
ity of test data with a large number of queries and
the associated relevance judgments is a prerequisite
and constraining factor for these experiments, since
this information is needed to drive the feedback loop
of the agent-based system. Producing these test col-
lections is an additional challenge to be addressed by
future work.

ACKNOWLEDGEMENTS

This research and development project is funded by
the German Federal Ministry of Education and Re-

search (BMBF) within the Incentives and Economics
of Data Sharing Funding Action (IEDS0001). The au-
thor is responsible for the content of this publication.

REFERENCES

Ahmadi, N., Sand, H., and Papotti, P. (2022). Unsupervised
Matching of Data and Text. arXiv.

Boteva, V., Gholipour, D., Sokolov, A., and Riezler, S.
(2016). A Full-Text Learning to Rank Dataset for
Medical Information Retrieval. In Ferro, N., Crestani,
F., Moens, M.-F., Mothe, J., Silvestri, F., Di Nunzio,
G. M., Hauff, C., and Silvello, G., editors, Advances in
Information Retrieval, volume 9626 of Lecture Notes
in Computer Science, pages 716–722. Springer Inter-
national Publishing, Cham.

Castro Fernandez, R., Mansour, E., Qahtan, A. A., Elma-
garmid, A., Ilyas, I., Madden, S., Ouzzani, M., Stone-
braker, M., and Tang, N. (2018). Seeping Semantics:
Linking Datasets Using Word Embeddings for Data
Discovery. In IEEE 34th International Conference on
Data Engineering, pages 989–1000, Piscataway, NJ.
IEEE.

Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G.,
Ibáñez, L.-D., Kacprzak, E., and Groth, P. (2020).
Dataset search: a survey. The VLDB Journal,
29(1):251–272.

Chu, X., Liu, J., Wang, J., Wang, X., Wang, Y., Wang,
M., and Gu, X. (2023). CSDR-BERT: a pre-trained
scientific dataset match model for Chinese Scientific
Dataset Retrieval.

Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A.,
and Zimmermann, A. (2019). A Decade in Hindsight:
The Missing Bridge Between Multi-Agent Systems
and the World Wide Web. In IFAAMAS, editor, Pro-
ceedings of the 18th International Conference on Au-
tonomous Agents and Multiagent Systems.

Costa, A. and Nannicini, G. (2018). RBFOpt: an open-
source library for black-box optimization with costly
function evaluations. Mathematical Programming
Computation, 10(4):597–629.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv.

Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C. H.,
and Shenker, S. (2003). On a Network Creation Game.
Proceedings of the Twenty-Second Annual Symposium
on Principles of Distributed Computing, pages 347–
351.

Fuhr, N. (2018). Some Common Mistakes In IR Evaluation,
And How They Can Be Avoided. ACM SIGIR Forum,
51(3):32–41.

Hemphill, L., Pienta, A., Lafia, S., Akmon, D., and Bleck-
ley, D. A. (2022). How do properties of data, their
curation, and their funding relate to reuse? Journal of
the Association for Information Science and Technol-
ogy.

Hinrichs, C. and Sonnenschein, M. (2017). A distributed
combinatorial optimisation heuristic for the schedul-
ing of energy resources represented by self-interested
agents. International Journal of Bio-Inspired Compu-
tation, 10(2):69–78.

Hogg, L. M. J. and Jennings, N. R. (2001). Socially In-
telligent Reasoning for Autonomous Agents. IEEE
Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 31(5):381–393.

Jackson, J. C., Rand, D., Lewis, K., Norton, M. I., and Gray,
K. (2017). Agent-Based Modeling. Social Psycholog-
ical and Personality Science, 8(4):387–395.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning (2014). GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Jeong, S., Baek, J., Park, C., and Park, J. C. (2021). Un-
supervised document expansion for information re-
trieval with stochastic text generation.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So,
C. H., and Kang, J. (2020). BioBERT: a pre-
trained biomedical language representation model for
biomedical text mining. Bioinformatics (Oxford, Eng-
land), 36(4):1234–1240.

Mahmud, S. M. H., Rabbi, M. F., and Guy-Fernand, K. N.
(2016). An Agent-based Meta-Search Engine Archi-
tecture for Open Government Datasets Search. Com-
munications on Applied Electronics, 4(7):21–25.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient Estimation of Word Representations in Vector
Space. International Conference on Learning Repre-
sentations.

Nagel, L. and Lycklama, D. (2021). Design Principles for
Data Spaces: Position Paper.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek
Srivastava, and Iryna Gurevych (2021). BEIR: A Het-
erogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Nannicini, G. (2021). On the implementation of a global op-
timization method for mixed-variable problems. Open
Journal of Mathematical Optimization, 2:1–25.

Nogueira, R., Lin, J., and Epistemic, A. (2019). From
doc2query to doctttttquery. Online preprint, 6:2.

Onal, K. D., Zhang, Y., Altingovde, I. S., Rahman, M. M.,
Karagoz, P., Braylan, A., Dang, B., Chang, H.-L.,
Kim, H., McNamara, Q., Angert, A., Banner, E.,
Khetan, V., McDonnell, T., Nguyen, A. T., Xu, D.,
Wallace, B. C., de Rijke, M., and Lease, M. (2018).
Neural information retrieval: at the end of the early
years. Information Retrieval, 21(2-3):111–182.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–
3992, Hong Kong, China. Association for Computa-
tional Linguistics.

Robertson, S. and Zaragoza, H. (2009). The Proba-
bilistic Relevance Framework: BM25 and Beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.

S. Oliveira, M. I., Barros Lima, G. d. F., and Farias Lós-
cio, B. (2019). Investigations into Data Ecosystems: a
systematic mapping study. Knowledge and informa-
tion systems, pages 1–42.

Strauß, O., Kutzias, D., and Kett, H. (2022). Agent-Based
Document Expansion for Information Retrieval Based
on Topic Modeling of Local Information. In 2022 9th
International Conference on Soft Computing & Ma-
chine Intelligence (ISCMI), pages 198–202. IEEE.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. (2020). MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Trans-
formers. arXiv.

Xue, B. and Yan, G.-l. (2012). Research on multi-agents
information retrieval system based on intelligent evo-
lution. In Proceedings of 2012 2nd International Con-
ference on Computer Science and Network Technol-
ogy (ICCSNT 2012), pages 1042–1045, Piscataway,
NJ. IEEE.

